

E

E

C

B

N

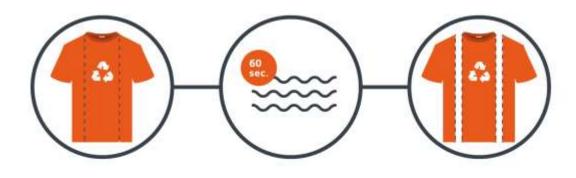
X

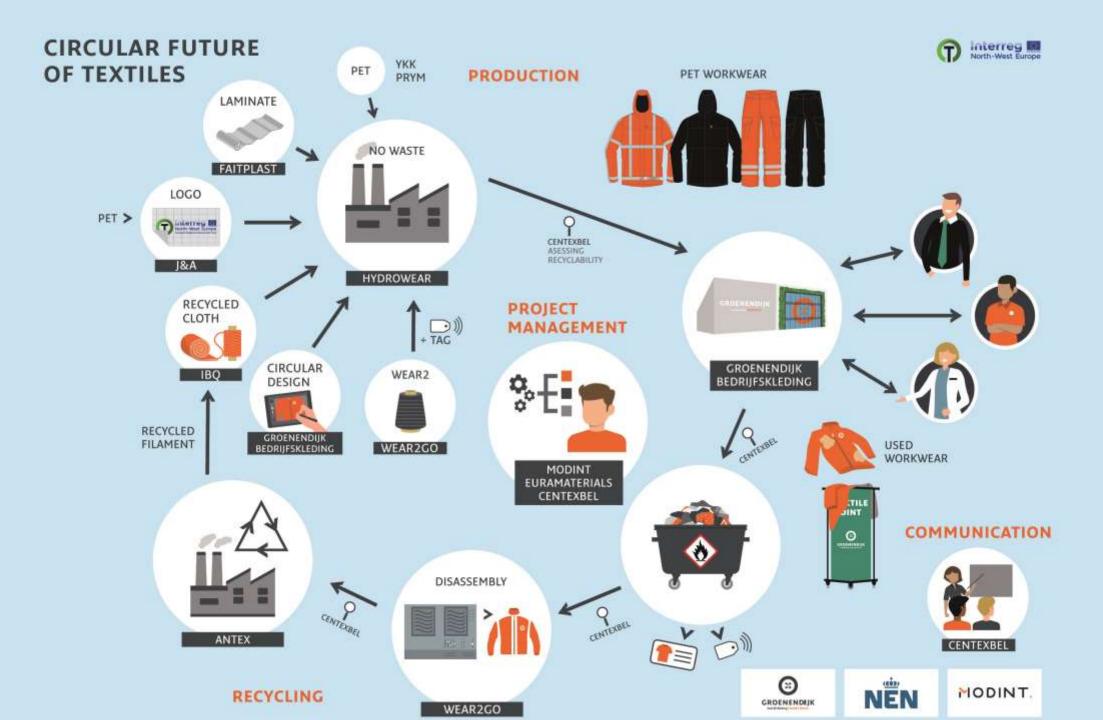
GROENENDIJK

X

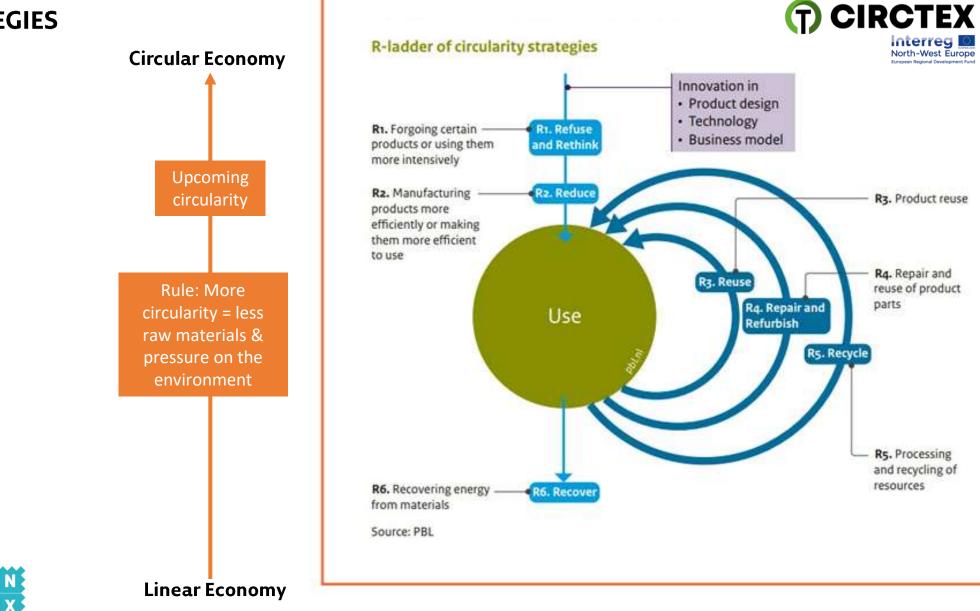
bedrijfskleding | werkt beter

Interreg NWE CircTex - Design for Recycling


Jeanet van der Stoel & Edwin Maes 05-06-2023


PARTNERS CIRCTEX

CIRCTEX PRODUCTIONPROCES



CIRCULAR STRATEGIES

C E T E GROENENDIJK

ECODESIGN

Why?

= Essential for Ecodesign

Life cycle thinking definition

= Consideration of environmental aspects relevant to a product during its entire life cycle.

Life cycle thinking implies:

- 1. Material acquisition
- 2. Design and development
- 3. Manufacturing
- 4. Delivery and installation
- 5. Use (including reuse, maintenance, repair, remanufacturing, refurbishing and upgrading)
- 6. End-of-life treatment
- 7. Disposals

Design for longevity

- Quality
- Maintenance
- Repairability

Design for efficient material usage

- 1. Recycled content
- 2. Sustainable fibres & materials
- 3. Sustainable production
- 4. Usage of chemicals

Design for recycling & reuse

- Possibility to recycle according to technologies
- Facilitate dismantling and reuse of certain parts

ISO 14006:2020 - Environmental management systems - Guidelines for incorporating ecodesign

What?

- 1. Evaluate product and recycling technique
- 2. Talk to a recycler for the requirements of recycling
- 3. Design the product for longevity and recycling
- 4. Evaluate the design technical, economically and environmentally
- 5. Return of materials

1. Evaluate product and recycling technique

- (Bio) Chemical recycling
- Thermal mechanical recycling
- Thermal chemical recycling
- Mechanical recycing
- Downcycling or upcycling

Decision for thermal mechanical recycling at Antex. Upcycling, creating a new product.

2. Talk to a recycler for the requirements of recycling

Desired output upcycling from product to product.

Decision for 100% polyester.

- Problem: thermal mechanical recycling
- Solution: chemical recycling

CIRCTEX RECYCLING AT ANTEX

3. Design the product for longevity and recycling

Design proces at Groenendijk Bedrijfskleding

- Hardware -> Zipper
- Wear2go yarn -> disassembly
- Membrame
- Reflection striping
- Sealtapes -> Eco-design

CIRCTEX KLEDING

CIRCTEX PRODUCTION PROCESS

4. Reuse & Disassembly the product for recycling

- Can the product have a second life? = Reuse
- Disassembly parts to optimalize recycling product
- \rightarrow Textile to textile recycling

CIRCTEX DISASSEMBLY AT WEAR2GO

CIRCTEX DEASSEMBLAGE BIJ WEAR2GO

5. Evaluate the design technical, economically and environmentally

- Cost of recycled material compared to virgin material
- Is consumer willing to pay for it?

LCA calculations virgin vs recycled Wearer test in different companies and pollution areas PPE and Öko-Tex certification. Legislation & funding

6. Return of materials

How? Awareness towards industry and consumers

- QR-code
- RFID code
- Digital product passport

A RFID tag is embedded in the clothing. The disassembler and recycler can read out the product composition for recycling. A consumer has access to the product journey of a garment.

GROENENDIIK

Is it possible to produce 100% circular workwear?

YFSI

CIRCTEX TALK

THANK YOU, ON BEHALF OF ALL PARTNERS!

N

